Impression Testing of Self-Healing Polymers

نویسندگان

  • Amy Huber
  • Jeffrey A. Hinkley
چکیده

As part of the BIOSANT program (biologically-inspired smart nanotechnology), scientists at NASA-Langley have identified a “self-healing” plastic that spontaneously closes the hole left by the passage of a bullet. To understand and generalize the phenomenon in question, the mechanical properties responsible for this ability are being explored. Low-rate impression testing was chosen to characterize post-yield material properties, and it turned out that materials that heal following ballistic puncture also show up to 80% healing of the low-rate impression. Preliminary results on the effects of temperature and rate of puncture are presented. Introduction After being struck and completely penetrated by a 9 mm bullet, a 6 mm-thick plate of Dupont’s Surlyn shows only a minor dimple (and sometimes a small projection on the exit side.) The hole is said to spontaneously “self-heal” [1]. A 1996 patent [2] specifies Surlyn 8940 for use in shooting-range targets. Although the linear viscoelastic behavior [1] and projectile impact [3] of this and some closely-related materials have been studied, healing itself is essentially instantaneous and the detailed mechanism remains in doubt. Simpler, laboratory-based tests would be of use, not only in studying the mechanism, but also in screening new, experimental materials (which might be designed to heal under different environmental conditions or possess other desirable properties such as resistance to space radiation). The present study explores the use of a moderate-rate impression test [4] as a characterization method. In principle, a single test could give the modulus of elasticity, the strain-hardening exponent, and the strain-rate sensitivity using very small specimens. As will be shown, the results may also be linked more directly to the healing phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polydimethylsiloxane-based Self-healing Composite and Coating Materials by Soo

This thesis describes the science and technology of a new class of autonomic polymeric materials which mimic some of the functionalities of biological materials. Specifically, we demonstrate an autonomic self-healing polymer system which can heal damage in both coatings and bulk materials. The new self-healing system we developed greatly extends the capability of self-healing polymers by introd...

متن کامل

Self-healing concrete and environmental health

Nanotechnology will serve as a suitable solution to achieve high performance in future construction and construction. Using this new technology, creativity and innovation can be achieved in the building industry. one of these new technologies of smart concrete is that in recent years, many researches and experiments have been done in scientific research centers around the world, so that the con...

متن کامل

Self-Healing Polymers and Composites

Self-healing polymers and fiber-reinforced polymer composites possess the ability to heal in response to damage wherever and whenever it occurs in the material. This phenomenal material behavior is inspired by biological systems in which self-healing is commonplace. To date, self-healing has been demonstrated by three conceptual approaches: capsule-based healing systems, vascular healing system...

متن کامل

Preparation and characterization of CS/ PEO/ cefazolin nanofibers with in vitro and in vivo testing

Objective(S): Electrospinning of chitosan/polyethylene oxide (CS/PEO) nanofibers with the addition of cefazolin to create nanofibers with antimicrobial properties were examined. Methods: Polymeric nanofibers including CS/PEO and CS/PEO /cefazolin, were produced by electrospinning method. The range of nanofiber was 60-100 nm in diameter and measured with I...

متن کامل

Self healing in polymers and polymer composites. Concepts, realization and outlook: A review

Formation of microcracks is a critical problem in polymers and polymer composites during their service in structural applications. Development and coalescence of microcracks would bring about catastrophic failure of the materials and then reduce their lifetimes. Therefore, early sensing, diagnosis and repair of microcracks become necessary for removing the latent perils. In this context, the ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005